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One-dimensional nonlinear Langmuir oscillations in a cold inhomogeneous plasma are considered.
The spatial distribution of the amplitude of oscillations is set by the initial disturbance and can be arbi-
trary, i.e., it is not in any way connected with the inhomogeneity of the plasma. Taking place at small
spatial gradients of the initial disturbance because of a growing with time phase shift of oscillations of
different electrons, the effect of formation of narrow density peaks is illustrated. The density peaks al-
ways move in the direction of a decrease of ion concentration. In this movement their amplitude can
grow or decrease depending on the direction of the initial disturbance gradient. A number of electrons,
forming density peaks, reduce with a diminution of plasma inhomogeneity but the peak amplitudes al-
ways increase unlimitedly with time up to the self-intersection of electron trajectories. An equation,
making it possible to determine the instant of trajectory intersection in case of small plasma inhomo-
geneity of arbitrary kind and arbitrary gradients of the initial disturbance, is obtained. It is shown by a
numerical calculation that the analytical relations obtained are not essentially changed if one takes into
account the nonlinearity of corresponding differential equations.

PACS number(s): 52.35.Fp, 52.35.Mw, 52.35.Sb

I. INTRODUCTION

It is known that the exact solution of equations,
describing one-dimensional movements of electrons in a
cold collisionless homogeneous plasma, is undamped
periodic oscillations with basic frequency w, that is the
Langmuir frequency. This solution is true up to some
critical value a. of the amplitude of oscillations. The
spatial structure and the amplitude of oscillations are set
by the initial disturbance. The intersection of electron
trajectories occurs at amplitudes a >a_ [1,2], periodic
oscillations are destroyed, and a peculiar one-dimensional
turbulence, not studied completely yet, develops.

In Ref. [3], dedicated to the a <a_, case, it is shown
that an electric field of Langmuir oscillations has a time-
independent component, which inevitably puts ions in
motion. Their distribution in space becomes nonuniform
and, giving most of their own energy to chaotic electron
movement, electron oscillations quickly damp. It seems
expedient to learn in more detail every ‘“‘elementary’ pro-
cess that determines the development of Langmuir tur-
bulence in such a scenario, in particular, peculiarities of
Langmuir oscillations of an inhomogeneous plasma.

Considerable clarification on this subject was achieved
long ago on a basis of qualitative considerations of small
amplitude oscillations. They take place at the local plas-
ma frequency w, so that as incoordination of oscillations
of individual electron layers increases, the length of the
perturbation wave decreases with time [4]. This cir-
cumstance leads to the intersection of the trajectories
after some time #, [S] which, in the case of coordinate-
independent amplitude, is determined in the following
way:

1
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where x, is the coordinate of electron equilibrium; &, is
the amplitude of oscillation of electron displacement.

Attention has also been paid to the case of wave break-
ing when analyzing the oscillations, engendered by an
abrupt ion density disturbance of one form or another
[6-8]. In this case the authors have essentially con-
sidered the solution when the spatial distribution of am-
plitude was connected rigidly with the inhomogeneity of
ion concentration. In the general case, the amplitude of
oscillations and the inhomogeneity of plasma concentra-
tion are independent parameters.

The present paper is dedicated to a detailed analysis of
Langmuir oscillations in this general case. Special atten-
tion too is paid to visualization of the process.

II. WAVE STRUCTURE IN A WEAKLY
INHOMOGENEOUS PLASMA

We consider a cold collisionless one-dimensional plas-
ma, which has a concentration n;(x) of motionless ions
related somehow to a coordinate in some spatial interval
(Fig. 1). Electrons are distributed like ions at an initial
moment of time (z =0) so that the electric field is O
(E|,—0=0). Let us introduce Lagrange’s variable x, for
electron coordinates at time ¢ =0 and let us also set the
one-dimensional disturbance of electron velocities at the
same time dx /dt|, _o=v(x), which will put the electrons
in motion. We calculate the change of the electric field,
accompanying any chosen electron, if one is shifted from
the initial position x, in the coordinate x (Fig. 1). Be-
cause intersections of electron trajectories do not occur
till some time ¢, the electron charge, which is to the left
(and accordingly, to the right) of the observed electron
does not change and the desired electric field is deter-
mined by the ion charge confined in interval [xg,x].
Thus,
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FIG. 1. Condition for the deduction of the equation of elec-
tron oscillations in an inhomogeneous plasma.

E =4men;(x —xy)+4meS(x,x,) , (2)

where S(x,x0)=fﬁo[n[(x')-—ni(xo)]dx' is the shaded

square in Fig. 1. Using (2), the equation of electron
movement can be written as

2
‘;tf = —wlz,(xo ) x

—xo)—w‘,z,(xo) ’ (3)

n;(xg)
where a)f, =4me’n;(x,)/m is the local plasma frequency.
By introducing new variables such as displacement of the
electron from its initial position of equilibrium §=x —x,
and dimensionless time 7=w,?, we rewrite (3) in the form
of

d2

——=—[1+R (x,,8)]8, 4)

dr
where R =S /n;8. Initial conditions for Eq. (4) appear as
follows:

[NRles)

(x9)
das = %o . 5)
dr |,=¢ @,

8[1=0=0 »
In explicit form the approximate analytical solution for
Eq. (4) may be found in the case

IR| <<1, (6)

when this equation is transformed into a linear one by re-
jection of the nonlinear in the & term. The solution of the
linear equation with the initial conditions (5) gives

vixg) |
= ———sinrt, (7)
w,(xg)
or
x=x0+—v—sin(a)pt) . (8)
@p

Let us note that R is the dimensionless parameter of in-
homogeneity, which implies relative change of ion
concentration on displacement amplitude of the oscil-
lating electron. If the dependence of ion concentration
can be presented by the linear function n;(x)=n;(x,)
+k(x —x,) in some spatial interval, then the corre-
sponding parameter of inhomogeneity R; is expressed by
means of the initial conditions as follows:

kU(xO)

20,(x¢)n;(xo) | ©

R,=
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FIG. 2. Condensations of trajectories in a linear inhomogene-

ous plasma in the case where the initial velocity of electrons
does not depend on the coordinate.

For concreteness a linear inhomogeneous plasma with the
parameter R; <<1 is considered unless otherwise stipulat-
ed.

The expression (8) describes the continuum of trajec-
tories with initial conditions and frequencies continuous-
ly distributed in x. The calculated trajectories of 40 elec-
tron sheets, situated equidistantly on the spatial interval
0 <x <20 at the initial moment of time, are given in Fig.
2. [Time is normalized in the plasma oscillation period at
x =0 and distance is normalized in the amplitude of dis-
placement of this electron, i.e., on the v(0)/w,(0)]. The
initial disturbance of electron velocities v is independent
of x,. The parameter of inhomogeneity R; is 0.01. Con-
densations of electron trajectories, appearing and grow-
ing with time, moving in the direction of the ion density
decrease, are well seen in this figure.

A more accurate notion about spatial and temporal dy-
namics of forming nonlinear waves of electron density
may be obtained if the continuity equation for the elec-
tron component is used in Lagrange’s form,

n(x)|,—oAx,=n(x,t)Ax , (10)

where Ax, is the distance between any two close electron
sheets at an initial moment of time, and Ax is a distance
between them at time ¢. Equation (10) simultaneously
with (8) allows the distribution of electron density at any
time ¢ to be calculated. A series of corresponding depen-
dencies, obtained under the same conditions as in Fig. 2
and under the same normalization of ¢ and x, are shown
in Fig. 3. Electron density is normalized in the undis-
turbed density at x =0. The dashed line gives the spatial
distribution of ion density.

One may see that in the case under consideration the
spatial structure of oscillations has already become com-
plicated at the third period of oscillations. Subsequently,
narrow peaks of density form, moving from right to left
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with simultaneous increase of amplitude. Analogous cal-
culations, made in the present work for the cases when v
depends on x, have shown that a decrease in amplitudes
of density peaks at their motion is possible as well. How-
ever, at any fixed point x, every density peak has a
greater amplitude than the preceding one had. The
growth of amplitude is not limited and tells us about con-
densation of trajectories up to their intersection, i.e., for-
mation of “folds” or “overlapping” in an electron medi-
um.

III. SELF-INTERSECTION
OF ELECTRON TRAJECTORIES

A. Linear approach

Let us use Eq. (8) for finding the time of the first inter-
section t.. Denoting initial coordinates of any two elec-
trons, which are close enough, by x,; and x, and their
initial velocities by v, and v, accordingly, we write equa-
tions of trajectories of these electrons,

v .
x1=x01+z)—sm(a)plt) ,
pl
(11)
Uy .
X, =xq, +——sin(wpyt) ,
(l)p2
where ,;,0,, are local plasma frequencies, correspond-
ing to points xy; and xp,. x; coincides with x, at the
moment ¢.; hence,
(Xo1 =Xgp)wp1 @y Uy
——— — 2= Zsin(wyt, ) —sin(w,yt,) . (12)
Uy Wpo Uy
Using the not‘ation Wpy ~ @y =Acop,. we let A.coptc <<1. In
Eq. (12), in this case, writing sin(w,,?.) as
sin(wpf, +Aw,?.) and expanding it into a series in
powers of Aw,?,, we may retain the linear term only.
Thus, we have

(X01 —Xgp )wpl _

Uy Uy

—1

Finally, going to the limit x5; —xy, = Ax,—0, we obtain

1 dvlxo) R |sin(w,t.)+Rw,t.cos(w t. )=1
oy (xq) dxg sin(w),?, wpt.cos(w,t, .

(14)

Consider now the solution of Eq. (14) in the two extreme
cases, when one item on the left-hand side is much
greater than the other. Let w,?, be small enough so that
Rwyt, <<1. Then the minimum positive value o,z
satisfying (14), is written in the following way:

. Uy A(l)p
sm(a)pltc )+ T)T ‘1 —
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FIG. 3. Space-time evolution of wave density under the con-
ditions of Fig. 2.

Aw,t.cos(wpt,) . (13)

a)pl

. dv dv
t —>0
arcsin |, / dxq dx
w,t, = (15)
T —arcsin a)p/ dv at L2 <0.
dx, dx

Intersection of the trajectories is not connected with
homogeneity of plasma in this case. As well as in a
homogeneous plasma, it is an effect of a big gradient in
the initial distribution of velocities in space and takes
place until the end of the first period of plasma oscilla-
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tions. At a small gradient of initial velocity disturbance,
when [1/w,(xq)]dv(xq)/dxq—R <1, the case under
consideration does not take place.

On the other hand, if (1 /colJ )dv /dx, <<1 (i.e., the con-
dition of absence of trajectory intersections is completely
fulfilled in a homogeneous plasma), we may neglect the
first item in (14). This gives

@, tczjle— , (16)
which is consistent with (1). The moment of trajectory
intersections is determined by Eq. (16) to within one
period of oscillations, which does not introduce a large
error, because of w,t, > 1. Thus, it follows from the ob-
tained analytical solution that intersections of electron
trajectories happen in an inhomogeneous plasma in any
case after some time determined by the parameter R.
These intersections are produced by the time-increase in-
coordination of oscillations of the neighboring plasma
layers.

B. The number of electrons in density peaks

Since wave breaking in an inhomogeneous plasma
takes place at any amplitude the next question is natural:
“Why does a space charge of forming bunches not
prevent overturning, in contrast to a homogeneous plas-
ma when the amplitude ought to be more than a_ to
overcome Coulomb’s repulsion?” To answer this ques-
tion it is necessary to calculate the forming bunch width
which is, conditionally, the x distance between intersec-
tion points of solid and dashed lines in Fig. 3. The width
Ax of the electron layer, situated at arbitrary time ¢ at
some of the mentioned intersection points, must satisfy,
according to (10), the condition

Ax =~Ax, . (17)

Then, differentiating (8) with respect to x, and consider-
ing, for simplicity, the case when oscillation amplitude
does not depend on xy, i.e., v(xq)/@,(xy)=const, we ob-
tain

dx v . do

—— =14+ —t—— tl=1. 18

dxg w, "dxg cos[w,(xq)¢] (18)
The relation (18) gives the sequence of values w,(x ),
corresponding to required values x,

(2s+1)w/2
oS -, (19)
where s is an integer. Later, using the relation between
frequencies and coordinates in a linear inhomogeneous
plasma,

1 k(xo,5s+1—%o,)

= 1
Op s +1=@p > n(xo,) , (20)

we find, taking account of (19), the initial distance / be-
tween the two nearest layers of interest:

2mn(xg )

I=xq41—X0s= 21

tw, k

4049

It is seen that electron bunch charge, which is directly
proportional to /, decreases with time (compare with Fig.
3). Substituting in (21) the value t=¢,, we find the
minimal value [,

IL=n—-. (22)

The distance between the points x; and x,, ; at the same
time is equal to (7—2)v /wp, i.e., ~1 on a scale of Fig. 3.
Thus, the answer to the formulated question is that with
the decrease of oscillation amplitude, a number of bunch
electrons decrease to the same degree. The electric field
turns out to be always insufficient to prevent intersections
of trajectories.

There are a number of plasma systems whose behavior
is significantly conditioned by excited Langmuir oscilla-
tions. One can name beam-plasma systems; a plasma un-
der intensive laser radiation, which drives plasma waves
by stimulated Raman scattering; a powerful high-
frequency radio wave, propagating through ionospheric
plasma; intensive impulse ion beams, capturing electrons
by their Coulomb field; wake-field accelerators, and some
others. With large amplitudes of oscillations, when oscil-
latory velocity v is much more than the thermal one v,, a
cold plasma approach is used, for simplification of
analysis. This is done in the present paper as well. How-
ever, because formation of density peaks lasts for many
periods, thermal motion can still be significant. Condi-
tions under which the considered effect of peak formation
takes place even in a warm plasma can be estimated in
the following way. According to (22) at time ¢, density
peaks consistent of electrons which were initially en-
closed in space interval [, =m(v/w,). At the same time
as t., owing to chaotic thermal velocities, every electron
sheet spreads by /,, =v,¢,. Thermal motion does not des-
troy the peaks of /,, </,. Using (16), we obtain the condi-
tion of existence of the considered effect in a warm plas-
ma,

Ue

R <7 .
Because R is small, this condition is more rigid than the
condition of availability of a cold plasma approach
(v, <v). Nevertheless, nearly relativistic (v~ 10"
cm/sec) v can be expected, for example, in wake-field ac-
celerators at large amplitude electric fields. At the same
time, v, is usually 10® cm/sec in a discharge plasma. Un-
der these conditions, even relatively weak inhomogeneity
of plasma with R ~0.01 can lead to wave breaking.

C. Accounting for nonlinearity of the original equations

The effect under consideration is connected with the
conduct of trajectories over a long time interval. There-
fore, the question about the possibility of an appreciable
influence of the nonlinear item in Eq. (4) on the obtained
solution, despite the item’s small value, is logical. One
may answer this question if a numerical calculation of
trajectories is performed. For this purpose, writing nor-
malized displacements of two electrons under considera-
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FIG. 4. Time of intersection of neighboring trajectories de-
pending on the parameter R. (1) The result of numerical calcu-
lations of trajectories by Eq. (3); (2) numerical solution of Eq.
(14); (3) calculation by Eq. (16).

tion as 8]=(x;—x¢)/(v;/w,) and 8,=(x,—xq)/
(v /@,,) and time as 7=w),;¢;, we write the correspond-
ing normalized equations for each of them. An expres-
sion is obtained for 8],

d?*s

71_7=—(1+R8'1) 1 (23)
with initial conditions

8il,=0=0, ﬂ =1, (24)

dr |r=o

and for 85,

‘:fj - 1+R8'2§::— a;Z—‘Z , (25)
with initial conditions

o 4] _may

850,=0=0, . (26)

7=0 vla)pZ

Equations (23) and (25) were solved by the Runge-Kutta
method while the trajectory intersection condition was
checked at each step,
Xgp —X
8 —oy=—2_"9 27)
vy /@y
and, thus, the corresponding moment of time 7, was
found. The dependence of 7, on the parameter R at
U, /v =1, ®,1/0,,=0.999 is mapped in Fig. 4. The cor-
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responding dependence, obtained by the numerical solu-
tion of Eq. (14), is shown in the same figure. Finally,
analytical dependence derived from Eq. (16) is depicted.
System parameters are identical for all of these curves. It
is seen that the analytical solution at small R gives the
time of trajectory intersection with good precision, while
nonlinearity does not introduce significant changes. This
last circumstance permits us to conclude, in particular,
that Eq. (16) may be applied, seemingly, when k depends
on x, i.e., n;(x) is a nonlinear function. If it is smooth
enough, the cumulative effect of the items with higher
powers of 8, which appear in this case in Eq. (4), is also
not great.

IV. CONCLUSIONS

One-dimensional Langmuir oscillations in a cold inho-
mogeneous plasma have been examined. Electron oscilla-
tions are excited by an initial push. The intensity distri-
bution of the push as a function of the coordinate is
defined without any connection with the inhomogeneity
of the ion background. Till the self-intersection of trajec-
tories, every electron moves independently of others and
its trajectory is determined by the equation of a nonlinear
oscillator with a frequency depending on the coordinate
of electron equilibrium. However, if the relative change
of ion concentration on the amplitude of the electron dis-
placement (i.e., R, the dimensionless parameter of the in-
homogeneity) is much less than 1, trajectory equations
are linearized and the process of wave analysis of electron
density is facilitated.

In contrast to the case of a homogeneous plasma, un-
limited growth of density of the forming electron accu-
mulations takes place at any initial velocity disturbance.
The universal equation, valid at any form of spatial distri-
bution of initial push intensity, has been formulated for
t., the corresponding time of trajectory self-intersections.
At small gradients of this initial push, w,z, ~R ~'. The
number of electrons making up the condensations is pro-
portional to the amplitude of electron oscillations.
Therefore, even at very small amplitudes, the spatial
charge is unable to prevent the wave breaking. Taking
account of nonlinearity in the trajectory equations ac-
cording to the numerical -calculations does not
significantly influence the value ¢, found analytically.
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